Primate Monocytes - CD14, CD16 - Ziegler-Heitbrock

Contact

Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses.

Abstract

Interleukin-10 (IL-10) is a dimeric cytokine with both immunosuppressive and immunostimulatory activities; however, IL-10-based therapies have shown only marginal clinical benefits. Here, we explored whether the stability of the IL-10 receptor complex contributes to the immunomodulatory potency of IL-10. We generated an IL-10 mutant with enhanced affinity for its IL-10Rbeta receptor using yeast surface display. Compared to the wild-type cytokine, the affinity-enhanced IL-10 variants recruited IL-10Rbeta more efficiently into active cell surface signaling complexes and triggered greater STAT1 and STAT3 activation in human monocytes and CD8+ T cells. These effects, in turn, led to more robust induction of IL-10-mediated gene expression programs at low ligand concentrations in both human cell subsets. IL-10-regulated genes are involved in monocyte energy homeostasis, migration, and trafficking and in CD8+ T cell exhaustion. At nonsaturating doses, IL-10 did not induce key components of its gene expression program, which may explain its lack of efficacy in clinical settings. Our engineered IL-10 variant showed a more robust bioactivity profile than that of wild-type IL-10 at low doses in monocytes and CD8+ T cells. Moreover, CAR-modified T cells expanded with the engineered IL-10 variant displayed superior cytolytic activity than those expanded with wild-type IL-10. Our study provides insights into how IL-10 receptor complex stability fine-tunes IL-10 biology and opens new opportunities to revitalize failed IL-10 therapies.

Authors: Gorby C, Sotolongo Bellón J, Wilmes S, Warda W, Pohler E, Fyfe PK, Cozzani A, Ferrand C, Walter MR, Mitra S, Piehler J, Moraga I,
Journal: Sci Signal;20200915; 13 (649) . doi:10.1126/scisignal.abc0653
Year: 2020
PubMed: PMID: 32934073 (Go to PubMed)