Primate Monocytes - CD14, CD16 - Ziegler-Heitbrock


The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells.


Flaxseeds have been known for their anti-cancerous effects due to the high abundance of lignans released upon ingestion. The most abundant lignan, secoisolariciresinol diglucoside (SDG), is ingested during the dietary intake of flax, and is then metabolized in the gut into two mammalian lignan derivatives, Enterodiol (END) and Enterolactone (ENL). These lignans were previously reported to possess anti-tumor effects against breast, colon, and lung cancer. This study aims to investigate the potential anti-cancerous effect of the flaxseed lignans SDG, END and ENL on acute myeloid leukemia cells (AML) in vitro and to decipher the underlying molecular mechanism. AML cell lines, (KG-1 and Monomac-1) and a normal lymphoblastic cell line were cultured and treated with the purified lignans. ENL was found to be the most promising lignan, as it exhibits a significant selective dose- and time-dependent cytotoxic effect in both AML cell lines, contrary to normal cells. The cytotoxic effects observed were attributed to apoptosis induction, as revealed by an increase in Annexin V staining of AML cells with increasing ENL concentrations. The increase in the percentage of cells in the pre-G phase, in addition to cell death ELISA analysis, validated cellular and DNA fragmentation respectively. Analysis of protein expression using western blots confirmed the activation of the intrinsic apoptotic pathway upon ENL treatment. This was also accompanied by an increase in ROS production intracellularly. In conclusion, this study demonstrates that ENL has promising anti-cancer effects in AML cell lines in vitro, by promoting DNA fragmentation and the intrinsic apoptotic pathway, highlighting the protective health benefits of flax seeds in leukemia.

Authors: Tannous S, Haykal T, Dhaini J, Hodroj MH, Rizk S,
Journal: Biomed Pharmacother; 2020 Oct 17 ; 132 110884. doi:10.1016/j.biopha.2020.110884
Year: 2020
PubMed: PMID: 33080470 (Go to PubMed)