A consensus immune dysregulation framework for sepsis and critical illnesses.
Abstract
Critical care syndromes such as sepsis, acute respiratory distress syndrome (ARDS) and trauma continue to have unacceptably high morbidity and mortality, with progress limited by the inherent heterogeneity within syndromic illnesses. Although numerous immune endotypes have been proposed for sepsis and critical care, the similarities and differences between these endotypes remain unclear, hindering clinical translation. The SUBSPACE consortium is an international consortium that aims to advance precision medicine in critical care through the sharing of transcriptomic data. Here, evaluating the overlap of existing immune endotypes in sepsis across >7,074 samples from 37 independent cohorts, we developed cell-type-specific gene expression signatures to quantify dysregulation within immune compartments. Myeloid and lymphoid dysregulation were associated with disease severity and mortality across all cohorts. Importantly, this dysregulation was also observed in patients with ARDS, trauma and burns, suggesting a conserved mechanism across various critical illness syndromes. Moreover, analysis of randomized controlled trial data revealed that myeloid and lymphoid dysregulation are associated with differential mortality in patients treated with anakinra in the SAVE-MORE trial (n = 452) and corticosteroids in the VICTAS (n = 89) and VANISH (n = 117) trials, underscoring their prognostic and therapeutic implications. In conclusion, our proposed immunology-based framework for quantifying cellular compartment dysregulation offers a potentially valuable tool for understanding immune dysregulation in critical illness with prognostic and therapeutic significance.
Authors: | Moore AR, Zheng H, Ganesan A, Hasin-Brumshtein Y, Maddali MV, Levitt JE, van der Poll T, Lu J, Bouma HR, Scicluna BP, Giamarellos-Bourboulis EJ, Kotsaki A, Martin-Loeches I, Garduno A, Rothman RE, Sevransky J, Wright DW, Atreya MR, Moldawer LL, Efron PA, |
---|---|
Journal: | Nat Med;2025Sep30. doi:10.1038/s41591-025-03956-5 |
Year: | 2025 |
PubMed: | PMID: 41028543 (Go to PubMed) |