Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection.
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNgamma and TNFalpha over PM1 formulated in the Sigma Adjuvant System.
Authors: | Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K, |
---|---|
Journal: | Bioconjug Chem;2023 Oct 18;34(10):1738-1753. doi:10.1021/acs.bioconjchem.3c00273 |
Year: | 2023 |
PubMed: | PMID: 37606258 (Go to PubMed) |